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Abstract

In the Rayleigh-Bénard convection model of incompressible buoyancy-driven fluids in a square cell,

fluid motion is highly dependent on the temperature field. Temperature differences across the cell can

cause variations in fluid densities and eventually lead to turbulence around the cell. Here, we approach

the problem of intervening fluid circulation and controlling heat transport by tilting the whole cell.

We mathematically express our tilted convection model with Navier-Stokes equations within Boussinesq

approximation. We solve the equations by numerical methods and derive the Reynolds number Re,

Nusselt number Nu, and the net angular momentum which reflect fluid motions and heat transfer within

the system. It’s discovered that circular activities gradually diminish as α grows, and heat transport

efficiency is maximized when heat and cooling sources are applied on vertical walls before dropping at

higher α degrees. Our findings provide inspirations for real life scenarios of controlling fluid activities

and heat transfer.
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1 INTRODUCTION

1 Introduction

Fluid activities and heat transfer in thermal convection systems have always been widely concerned and

studied as they’re applicable to a broad range of scientific and industrial problems in our real life [2]. For

example, both the enhancing [28] and suppressing [9], [15] of heat transportation are crucial topics included

in comprehensive chemistry, biology, and engineering aspects, such as designing efficient heating device or

achieving effective ventilation in buildings and rooms. It’s also encountered in natural processes [30] like

crustal movements, ocean currents, and monsoons. The general pursuit of understanding and controlling

thermal convection in fluid turbulence has cultivated extensive scientific research which studies thermal

convection and diffusion in fluids, and yet the question remains how to analyze the complicated dynamics of

heat-carrying fluid flows within a model that well simplifies natural reality.

The Rayleigh-Bénard convection model is a typical and common-studied model that describes an ideal

fluid container fixed to a heating and cooling source [18]. As the density lowers along with the heating

of fluids, the buoyant force promotes the hotter fluids to elevate while colder fluids submerge, causing

turbulence and even large scale circulation to form in specific viscosity and thermal diffusivity settings. A

variety of subsequent research is based on the model in studying turbulence that carries heat across fluids

and proposing relevant methods to control the overall heat transfer in the system. Among all these studies,

a great diversity of methods have been proposed to change thermal convection by toggling the physical

properties of the convection system.

For instance, there have been research that focuses on introducing oscillatory flow pulsation to the cell

[21], [29]. Alternatively, a series of studies have concentrated on the influence of surface roughness upon

thermal convection, aiming to enhance heat transport [10], to examine whether heat flux decreases may

happen in specific cases [11], [31], or to facilitate the ”ultimate regime” where heat transport is independent

from fluid molecular properties [24], [38]. Such approaches to roughness have been similarly applied to assess

shear effects in a cell [7], [16]; or the effects of means of confinement inserted in the cell like partition walls

[4], [9], narrowed cell width [14], or direct adjustments of the size (aspect ratio) of the cell [26].

Studies have also focused on controlling thermal boundary conditions [13] of the convection system.

Specific approaches include adding extra heat sources to the sidewalls of the cell [34], imposing a horizontal

flux [19], and even configuring oscillatory sidewall temperatures [32], [35], [36]. In this way, researchers can

examine how the top/bottom heating/cooling sources in the classical Rayleigh-Bénard model can interact

with the newly introduced temperature configurations.

Researchers have also considered the physical properties of fluids and put them into use. Apart from
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2 MODEL FORMULATION

nanofluids [8], polymer [5], and particles [3], [33], studies have also concerned turbulence in multiphase fluids

[6], [28], [17], [33], which essentially add new factors that decide the fluid density (and the forcing upon it)

apart from the scalar temperature value [9]. Besides changing inherent physical properties of the container

and the fluids, scientists have also made attempts imparting dynamic operations to the cell. The cell can be

rotated [22], [37], [9] about the vertical axis at certain ranges (the inverse Rossby-number range) of angular

speeds, or vertically vibrated [30] so that the vibrations interfere with the motions of buoyancy-driven fluids.

In the end, all adjustments and operations formulated and implemented are extendable to real life strategies

in industry and engineering to control dynamic fluid activities and enhance heat transfer. From a broader

view, a great level of freedom has been left to nowadays researchers to find their own ways adjusting the

model. In our study, we’ve chosen the approach of tilting the entire cell and examining how the thermal

convection is influenced by different tilting angles.

We refer to studies conducting similar tilting operations in recording both the vertical heat flux (Nusselt

Number Nu) [27] passing through the cell and the Reynolds number Re implying the activeness of turbulent

fluids in the cell [12], given different tilting angles. In this way, we draw a complete picture of flowing

incompressible fluids carrying heat in a tilted square cell. Nonetheless, instead of composing the Oberbeck-

Boussinesq equations to model the convection system [27], we refer to [19] and construct our own Navier-

Stokes equations to describe the system.

In the following sections, we’ll present how we analyze the impacts of convection-cell-tilting on fluid

motions and how it’s intercorrelated with enhanced or reduced heat transfer within the cell. In section 2

we derive the concepts of vorticity and streamfucntion from velocity, and we compose the Navier-Stokes-

Boussinesq equations along with the heat equation to describe the dynamics of fluid velocity and temperature.

Then, in section 3 we discretize the equations and convert them into Helmholtz equations solvable by matrix

methods. Finally, in section 4 we extract the Reynolds number Re, Nusselt number Nu, and the system

total angular momentum from the equation solutions so that we can interpret the distinct modes of motion

and heat transfer of the fluids at different tilting angles.

2 Model Formulation

We refer to [1] in establishing a model for fluid dynamics inside the cell. A preliminary set of Navier-

Stokes equations is written to elucidate the relation between fluid velocity, pressure, and the buoyant force.

We apply Boussinesq approximation to the equations to introduce the influence of temperature and density
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2.1 Euler’s Equations 2 MODEL FORMULATION

in the dynamical system, and we also compose the energy equation to describe how temperatures at different

locations in the system change along time. To make the system of equations solvable, we introduce the

crucial concepts of vorticity and stream-function in representing velocity. In section 3, the partial differential

equations for temperature, vorticity, and stream-function will be discretized and solved by numerical methods

to indicate the flowing of fluids and energy flux at every time step in each part of the convection cell.

2.1 Euler’s Equations

The Navier-Stokes equation derives from the Euler’s equation of motions [1] which focuses on a unit

blob flowing inside the cell, whose location x can be considered as a function of time t. The Euler’s equation

describes that the rate of change of flow velocity of the blob is decided by the buoyant force and the pressuring

of surrounding fluids. We start with proving the equation inside the classical Rayleigh-Bénard convection

model which is untilted (α “ 00), and later we’ll modify the model for the case of a non-zero tilting angle.

Theorem 1 (Euler’s Equations). For a unit blob at time t and location x “ pxptq, yptqq in an untilted

Rayleigh-Bénard convection cell, the total differential of its flow velocity upx, y, tq “

ˆ

upx, y, tq vpx, y, tq

˙T

depends on fluid density ρ, pressure ∇p exerted by surrounding fluids, and the buoyant force represented by

the gravitational term g “

ˆ

0 g

˙T

where g is the gravitational acceleration.

Du

Dt
“ ´

∇p
ρ

` g, (1)

∇ ¨ u “ 0. (2)

Proof. Taking an arbitrary domain of fluids inside the cell with mass m, volume V and surface boundary

S “ BV , by second Newton’s Law, we can write the equation for the total differential of u as

m
Du

Dt
“ Fpressuring ` Fbuoyancy, (3)

where m “ ρV , Fpressuring describes the pressure force from surrounding fluids and Fbuoyancy describes

the buoyant force.

According to Archimedes’ principle,

Fbuoyancy “ ρV g. (4)
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2.2 Navier-Stokes Equations 2 MODEL FORMULATION

Denoting n as the unit vector normal to blob surface S, then the pressure force imparted to the fluids is

Fpressuring “ ´

˛
S

p ¨ n dS “ ´

ˆ
V

∇p dV. (5)

Reducing the domain to a sufficiently small blob of fluid so that ∇p is assumed to be invariant, the pressure

force is then simplified to ´∇pV . Now, applying 4 and 5 to 3, we finally compose the equation

ρV
Du

Dt
“ p´∇p` ρgqV. (6)

which derives the equation 1.

As for the proof of 2, check that the volume of incompressible fluid leaving the domain is written as
¸
S
u¨n dS

which should be zero on account of incompressibility, giving the equation

˛
S

u ¨ n dS “

ˆ
V

∇ ¨ u dV “ 0. (7)

which, reducing the domain to a unit blob, derives the incompressibility condition 2. This completes our

proof of 1 and 2.

2.2 Navier-Stokes Equations

The formulation of the Euler’s equation 1 in the classical Rayleigh-Bénard model leads to the Navier-

Stokes Equation in a tilted convection model by modifying the gravitational term g, expanding Du
Dt , and

introducing the viscosity term ν. The analysis of a dyed blob wandering inside the cell provides us information

of fluid velocities at every location of the whole cell, and the information dynamically changes through time.

Theorem 2 (Navier-Stokes Equations). For fluids in a Rayleigh-Bénard convection cell tilted counter-

clockwise with angle α at time t and location x “ px, yq, we can associate the gradient and time derivative

of the fluid velocity u with a series of forcing terms. Eventually the equations are written as

$

’

’

&

’

’

%

ut ` pu ¨ ∇qu `
∇p
ρ ´ ν∆u “

ˆ

g sinpαq g cospαq

˙T

,

∇ ¨ u “ 0.

(8)

Proof. As mentioned above, the rate of change of flow velocity Dupxptq,yptq,tq
Dt describes the changing velocity
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2.2 Navier-Stokes Equations 2 MODEL FORMULATION

Figure 1: Gravitational Impact upon Tilted Convection Cell

of a flowing dyed blob whose location x “

ˆ

xptq yptq

˙

is regarded as a function of time. Writing u “

ˆ

u v

˙T

, we can therefore expand the rate of change of flow velocity:

Du

Dt
“ ut ` uux ` vuy “ ut ` u ¨ ∇u, (9)

where we denote ut “ Btu “ Bu
Bt (and the similar notations work for other partial derivatives in this paper).

Notice that ut denotes the rate of change of u at fixed locations, and ux and uy describe the changing rate

at fixed time along different locations.

As we always regard the x and y axes of our system as parallel to the top and bottom and sides of the

convection cell as shown in figure 1, the vertical gravitational term g is decomposed along the two axes as

ĝ “

ˆ

g sinpαq g cospαq

˙T

. (10)

Applying all modifications to 1, and also taking into account the viscous term ν∆u eventually gives the

Navier-Stokes equations 8.
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2.3 Boussinesq Approximation 2 MODEL FORMULATION

2.3 Boussinesq Approximation

We further apply a series of simplifications to our model within Boussinesq approximation to emphasize

the role of temperature in changing the concentration of fluids, which further affects buoyancy and fluid

velocity. To be specific, we apply the first order Taylor expansion to the density term ρpp, T q with respect to

the variable T and the influence of pressure p is ignored. In this way, we no longer consider ρ as a function

of time and space. We eventually obtain the Navier-Stokes-Boussinesq equations.

Theorem 3 (Navier-Stokes-Boussinesq Equations). For fluids in the Rayleigh-Bénard convection cell mod-

eled by the Navier-Stokes equations 8, the flow velocity u is associated with fluid temperature T px, y, tq by:

$

’

’

&

’

’

%

ut ` pu ¨ ∇qu “ ´
∇p
ρ0

` ν∆u ´ ĝp1 ´ αT pT ´ T0qq,

∇ ¨ u “ 0,

(11)

where αT is the thermal expansion coefficient and T0 is the reference temperature when the corresponding

density takes the value ρ0.

Proof. Detailed explanations of the Boussinesq approximation can be found in [25].

Apart from the velocity equations, we also build the partial differential equation for temperature T in a

way similar to our tracking of the velocity of a dyed blob flowing in the cell, and neglecting the dissipation

of heat.

Theorem 4 (Heat Equation). For fluids in the Rayleigh-Bénard convection model with thermal diffusivity

κT and scalar temperature T pxpx, y, tq, the heat equation is written as:

Tt ` pu ¨ ∇qT “ κT∆T. (12)

Proof. Modeling a dyed blob with temperature T pxptq, yptq, tq, because heat dissipation is ignored, the total

differential of T is only related with the thermal diffusivity and the Laplacian of T :

DT

Dt
“ κT∆T. (13)

Considering that T is dependent on the functions xptq and yptq, whose rate of change equate to the velocity
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u of the blob decomposed on the x and y axes, we can expand the total differential in a way similar to the 9:

DT

Dt
“ Tt ` uTx ` vTy “ Tt ` T ¨ ∇u, (14)

and the simultaneous equations 13 and 14 derive the equation 12

We’ll later see the importance of the temperature equation in supporting our solving of the vorticity

equation which finally deduces the velocity values.

2.4 Vorticity and Streamfunction

To cancel out the unknown pressure term in the Navier-Stokes-Boussinesq equation 11, we introduce

the concept of vorticity ω by applying the curl operator to flow velocity and converting 11 into an equation

of ω.

Definition 1 (Vorticity). For flow velocity u, the vorticity ω is defined as a scalar value satisfying the

equation:

ωk “ ∇ ˆ u, (15)

where k represents the unit vector on a third dimension besides the x and y dimensions of the cell.

Theorem 5 (Vorticity Equation).

ωt ` u ¨ ∇ω ´ ν∆ω “ αT rTxg cospaq ´ Tyg sinpaqs. (16)

Proof. By the definition of the curl operator, given a 3-dimensional vector a “

ˆ

a b c

˙T

with cartesian

coordinates on the x, y, and z axes, there’s that

∇ ˆ a “

ˆ

Byc´ Bzb Bza´ Bxc Bxb´ Bya

˙T

. (17)

Then, considering a 2d-vector term a as a 3d-vector with the value on the z axis as zero, the values on the

x and y axes of ∇ ˆ a are both reduced to zero. In other words, curl operator merges the values of the

2d-vector terms and attributes them to a scalar on the extra z dimension.

Applying the curl operator to each term in 11 and checking the resulting scalar value on the z dimension,

the velocity term u gives ω by definition 15 and the pressure term ´∇p
ρ0

gives scalar zero. For the gradient
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2.4 Vorticity and Streamfunction 2 MODEL FORMULATION

term ∆u “

ˆ

uxx ` uyy vxx ` vyy

˙T

, there’s that

Bxpvxx ` vyyq ´ Bypuxx ` uyyq “ B2
xxpvx ´ uyq ` B2

yypvx ´ uyq “ ∆ω, (18)

and for the gravitational term there is that

∇ ˆ pαtpT ´ T0q ´ 1q

ˆ

g sinpaq g cospaq 0

˙T

“ αT rTxg cospaq ´ Tyg sinpaqs. (19)

To sum up, applying the curl operator to the equation 11 secures the relation 16 for ω.

However, the lack of boundary data of ω makes the vorticity equation 16 unsolvable, so we have to

support our convection model with more equations. Thus, the incompressibility condition 2 leads us to

introduce the concept of streamfunction ψ.

Definition 2 (Streamfunction). For flow velocity u, the streamfunction ψ is defined by the curl operator

equation:

u “ ∇ ˆ pψ ¨ kq. (20)

We can check that the streamfunction ψ is mathematically defined to render the flow velocities on the

x and y directions – u and v – as its partial derivatives, and that ψ is associated with vorticity ω by a simple

Poisson equation. In this sense, the streamfunction takes much more an abstract mathematical meaning

than a practical physical meaning.

Theorem 6 (Streamfunction Equation). By the definition of vorticity ω and streamfunction ψ, it holds that:

∆ψ “ ´ω. (21)

Proof. Since ψk =

ˆ

0 0 ψ

˙T

, there’s that

∇ ˆ pψkq “

ˆ

Byψ ´Bxψ 0

˙T

. (22)

Therefore, applying curl operator to 20 gives:

ω “ ∇ ˆ u “ ∇ ˆ r∇ ˆ pψkqs “ ´B2
yyψ ´ B2

xxψ “ ´∆ψ. (23)
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This completes our proof of 21.

We’ll see in the later section 3 how the streamfunction provides sufficient boundary data that makes the

vorticity equation solvable. Basically, the Neumann and Dirichlet conditions provided by ψ and temperature

T are all the information we have to solve the PDEs 12,16, and 21 and acquire approximate results for the

variational temperatures and velocities everytime, everywhere in the cell.

2.5 Nondimensionalization

We refer to [20] in nondimensionalizing the temperature, velocity, vorticity, and streamfunction values

which we now denote as θ, U “

ˆ

U V

˙T

, Ω, and Ψ. This enables us to neglect the difference in units and

amplitudes of the physical terms.

We set the dimensionless convection cell to be a domain D “ r0, 1s ˆ r0, 1s. To make T dimensionless,

because the convection cell takes temperature T1 at the heated bottom and temperature T2 at the cooled

top, we denote θ “ T´T2

T1´T2
. Since the value of T is interconnected with the values of the other three terms by

the equations 12, 16, and 21, we only need to ensure the initial and boundary conditions provided by θ and

Ψ are made dimensionless, and then nondimensionlize the non-zero forcing term in 16 so that all variables

are guaranteed to be dimensionless.

The initial conditions for velocity, vorticity and streamfunctions are trivially set as U “ 0,Ω “

0, and Ψ “ 0 at t “ 0 as there’s initially no flow or stream inside the cell. Rigorously speaking, the

initial streamfunction term Ψ can be any constant value C (and assumed zero in our model, without loss

of generality) as only its gradient is involved in the equations, which is set as zero because initial velocity

should be zero. We’ll later see that the same logic applies for the boundary values of Ψ.

Our model starts with a heat source heating the bottom of the cell, a ”cooling source” absorbing heat at

the top of the cell, and all the other parts of the cell remaining uninfluenced. However we tilt and rotate the

cell, the heating/cooling sources are assumed to be fixed to the bottom/top of the cell. To mathematically

express this initial temperature field, we write θpx, yq “ p1 ´ yq ` 10´6e´10ppx´0.5q
2

`py´0.95q
2

q so that the

initial temperature at the bottom y “ 0 is around 1 and decreases (almost linearly) along the y-axis until

reaching the coldest value 0 at the top y “ 1 of the cell. With the perturbation in temperature, fluids will

start flowing owing to different density/gravity amplitudes.

As we assume the external heat source continues to exert its influence upon the bottom of the cell and

the top of the cell is maintained cooled, we may set the Dirichlet conditions for the dimensionless tempera-
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2.5 Nondimensionalization 2 MODEL FORMULATION

tures θ at the top (y “ 1) and bottom (y “ 0) of the cell to be respectively 0 and 1. For the left and right

sides, we set the Neumann conditions θn “ θx “ 0 because the sides are considered insulated and provide

no heat source, and the actual temperature values are unpredictable.

As for the streamfunction, we have both the Neumann condition: Ψn “ 0 and Dirichlet condition:

Ψ “ 0 that holds on BD “ tpx, yq|x P t0, 1u or y P t0, 1uu, which comes from the direct fact that no flow is

passing on the sides with a direction either parallel or perpendicular to these sides. We can check that the

Dirichlet and Neumann conditiosn for Ψ are valid. That is, the Dirichlet conditions are continuous on the

four corners; the Neumann conditions are compatible with the rates of change (derivatives) of Dirichlet con-

ditions along directions parallel, instead of perpendicular, to each side; and the similarly derived derivatives

for the Neumann conditions themselves are also continuous on the four corners.

Finally, it comes that there’s no confirmed boundary conditions for vorticity Ω because it results from

the curl product of velocity U on BD, meaning that the partial derivative of U should be computed which

requires information of changeable velocity in the inner domain DzBD. This differs from the secured initial

condition of Ω which derives from complete information of U over the entire domain D at time t “ 0. Nev-

ertheless, with the compatibility of boundary conditions, we’re able to conduct the Chebyshev-Chebyshev

method in section 3 to transform the Neumann conditions for streamfunction into Dirichlet conditions for

vorticity and then solve the equations for the both variables.

Finally, introducing the Prandtl number Pr “ ν
κT

and Rayleigh number Ra “
gαT pT1´T2qH3

κT ν (H denotes

the height of the cell), we also obtain the dimensionless form of the forcing term in the vorticity equation 16

cosαPrRaθx ´ sinαPrRaθy. This wraps up our nondimensionalization of all equations to be solved.

Remark 1. The nondimensionalized system of partial differential equations for the velocity vector, temper-

ature, vorticity, and streamfunction goes as:

θt ` U ¨ ∇θ ´ ∆θ “ 0, (24)

Ωt ` U ¨ ∇Ω ´ Pr∆Ω “ cosαPrRaθx ´ sinαPrRaθy, (25)

∆Ψ ` Ω “ 0, (26)

θ “ 1 at y “ 1; θ “ 0 at y “ 0; θn “ 0 at x P t0, 1u, (27)

Ψ “ Ψn “ 0 on BD, (28)
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$

’

’

&

’

’

%

Ψ “ Ω “ 0 at t “ 0,

θpx, yq “ p1 ´ yq ` 10´6e´10ppx´0.5q
2

`py´0.95q
2

q.

(29)

.

In the rest of the paper, we’ll discretize and solve this system of equations to extract statistics of fluid

velocity and heat transfer in our Rayleigh-Bénard convection system. In the sections after 3.1, all methods

we’re using can be looked up in [20].

3 Methods

Instead of approaching the set of PDEs analytically, we aim to compute approximated solutions to the

equations by applying them to existing discretization schemes, with which we then reduce all equations to

the form of numerically solvable Helmholtz equations.

3.1 Discretization Scheme

As we numerically approach the PDEs, we decompose the continuous dimension of time into discrete

timesteps, and then we deduce solutions for the equations in the form of function values (temperature,

velocity, vorticity, streamfunction) computed for a set of discrete points on the xy-plane. The equation is

converted into a recurrence relation, where secured solutions for discrete points in former timesteps contribute

to solutions in later timesteps. The error of the approximated solution to the actual continuous one will

diminish as the size of the timestep tends to zero, but only when the discretization points and the recurrence

relations are exquisitely chosen.In our model, we apply the equations 24 and 25 to the semi-implicit Adams-

Bashforth/Backward-Differentiation (AB/BDI2) scheme.

Theorem 7 (AB/BDI2 Scheme). For the temeprature equation 24, fixing a size of the timestep ∆t, the

discretized version of the equation is written as

3θn`1 ´ 4θn ` θn´1

2∆t
` 2pUn

¨ ∇θnq ´ pUn´1
¨ ∇θn´1q “ ∆θn`1, (30)

where qn`kpx, yq, k P Z describes the function value qpx, yq at the pn` kqth timestep.

Proof. Detailed explanations for the AB/BDI2 scheme can be found in [23].
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Now, by moving the terms of θn`1 to the left hand side of the equation and the rest of the terms to the

right, we’ll obtain the Helmholtz equation:

∆θn`1 ´
3

2∆t
θn`1 “ 2pUn

¨ ∇θnq ´ pUn´1
¨ ∇θn´1q ´

2θn

∆t
`

1

2∆t
θn´1. (31)

Similarly, the vorticity equations 16 becomes

∆Ωn`1 ´
3

2Pr∆t
“

1

Pr
p2pUn

¨∇Ωnq ´ pUn´1
¨∇Ωn´1q ´

2Ωn

∆t
`

Ωn´1

2∆t
´ pcosαPrRaθn`1

x ´ sinαPrRaθn`1
y qq.

(32)

It’s notable that the equation 21 already takes the form of a Helmholtz equation, so the discretization

of the streamfunction equation and its boundary conditions are written as

∆Ψn “ ´Ωn, (33)

$

’

’

&

’

’

%

@y P 0, 1,Ψnpx, yq “ 0,

@px, yq P BD,Ψn
npx, yq “ 0.

(34)

Correspondingly, the initial conditions are written as

$

’

’

&

’

’

%

θ´1px, yq “ θ0px, yq “ p1 ´ yq ` 10´6e´10ppx´0.5q
2

`py´0.95q
2

q,

Ω´1 “ Ω0 “ U´1
“ U0

“ Ψ0 “ 0,

(35)

and the boundary conditions become

$

’

’

&

’

’

%

@y “ 1, n P N, θnpx, yq “ 1;@y “ 0, n P N, θnpx, yq “ 0,

@x P t0, 1u, n P N, θnnpx, yq “ 0,

(36)

where n P N.

At timestep n` 1, all terms in 31 and 32 with index n and n´ 1 are known, so the equations take the

form of a Helmholtz equation (∆q´σq “ r for some coefficient σ and function term r). To start an AB/BDI2

scheme, we require both q0 and q´1, therefore we equate the values of both terms to the pre-assumed initial

conditions, as is shown in 35. Logically, knowing the initial data U´1,U0, θ´1, and θ0 triggers the subsequent

recursive steps in obtaining values θn`1,Un`1,Ωn`1, and Ψn`1 for all integer n.
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Remark 2. The procedure of solving all unknown variables in the Navier-Stokes-Boussinesq equations goes

as follows. We deduce, combining U´1,U0, θ´1, and θ0, the temperature θ1 by the equation 31. Then we

apply θ1 and the initial vorticity Ω0 and Ω´1 to 32 to deduce vorticity Ω1. Ω1 is immediately applied to 33

to solve Ψ1 and derive U1 by partial differentiation, which then contributes to solving θ2 by 31. From then

on, we take the recursive steps to circularly solve the values θn`1, Ωn`1, Ψn`1, and Un`1 (n P N) with the

boundary conditions at hand.

The equation we’re solving is always a Helmholtz equation, except for solving Ω which lacks a boundary

condition. In that case, the Chebyshev-Chebyshev method described in 3.3 is first applied to generate the

boundary condition we need so we can then adopt the general method in 3.2 to solve Helmholtz equations.

3.2 Helmholtz Equation

As mentioned, the Helmholtz Equation takes the general form

@px, yq P D,∆upx, yq ´ σupx, yq “ fpx, yq, (37)

with arbitrary coefficient σ, function term f , and Robin boundary data (including Dirichlet and Neumann

boundary conditions as special scenarios)

@px, yq P BD,αupx, yq ` βunpx, yq “ gpx, yq, (38)

for function term g and arbitrary coefficients α and β which are fixed on one side of the boundary, but may

differ when switched to another side.

To numerically solve the Helmholtz equation with Robin boundary conditions, we basically adopt the

Chebyshev collocation methods. Taking the Gauss-Lobatto points

GNx,Ny “ tpxi, yjq|xi “
cos πi

Nx
` 1

2
, yj “

cos πj
Ny

` 1

2
, i “ 0, . . . , Nx, j “ 0, . . . , Nyu, (39)

where Nx and Ny are arbitrarily chosen numbers reflecting the scale of fineness of our approximation (by

default we set both values as 256), and denoting uNx,Ny
pxi, yjq “ upxi, yjq for the discrete collocation points,
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we aim to solve the collocation equations

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

BxxpuNx,Ny
qpxi, yjq ` ByypuNx,Ny

qpxi, yjq ` σuNx,Ny
pxi, yjq “ fpxi, yjq, i P t1, . . . , Nx ´ 1u, j P t1, . . . , Ny ´ 1u,

αupuNx,Ny
pxi, yNy

q ` βupBypuNx,Ny
qpxi, yNy

q “ gup, i P t1, . . . , Nx ´ 1u,

αdownuNx,Ny pxi, y0q ` βupBypuNx,Ny qpxi, y0q “ gdown, i P t1, . . . , Nx ´ 1u,

αleftuNx,Ny px0, yjq ` βleftBxpuNx,Ny qpx0, yjq “ gleft, j P t1, . . . , Ny ´ 1u,

αrightuNx,Ny
pxNx

, yjq ` βrightBxpuNx,Ny
qpxNx

, yjq “ gright, j P t1, . . . , Ny ´ 1u,

(40)

where function values for inner collocation points satisfy 37 and inner boundary collocation points (collocation

points on the boundary except the four corners) satisfy the boundary conditions 38.

We can solve the collocation equations 40 by expanding the partial derivative terms so that we can later

convert the system of equations into one matrix equation.

Theorem 8. With the Gauss-Lobatto points 39 chosen, the first and second order partial differentiation

terms in 40 can be approximated as:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

BxpuNx,Ny qpxi, yjq “
řNx

r“0 d
p1q

x,i,ruNx,Ny pxr, yjq,

BxxpuNx,Ny
qpxi, yjq “

řNx

r“0 d
p2q

x,i,ruNx,Ny
pxr, yjq,

BypuNx,Ny
qpxi, yjq “

řNy

r“0 d
p1q

y,j,ruNx,Ny
pxi, yrq,

ByypuNx,Ny
qpxi, yjq “

řNy

r“0 d
p2q

y,j,ruNx,Ny
pxi, yrq,

(41)

with an error bounded by Op 1
N2 q, where N “ minpNx, Nyq.

Specifically, expressions for d terms vary among orders of differentiation and indices like x, i, r or y, j, r. To

avoid repetition, we present example expressions in this theorem:

$

’

’

&

’

’

%

d
p1q

x,i,r “ 2 ci
cr

p´1q
i`r

xi´xr
for i, r “ 0, . . . , Nx and i ‰ r, where c0 “ cNx “ 2 and cr “ 1 for r P t1, . . . , Nx ´ 1u,

d
p2q

y,j,j “ ´2
pN2

y´1qp1´y2
j q`3

3p1´y2
j q2

for j P t1, . . . , Ny ´ 1u.

(42)

Proof. The expansion terms essentially derive from the forms

uNx,Ny
px, yjq “

Nx
ÿ

i“0

hx,ipxqupxi, yjq, (43)
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uNx,Ny
pxi, yq “

Ny
ÿ

j“0

hy,jpyqupxi, yjq, (44)

where uNx,Ny px, yq are constructed as Lagrange Interpolation Polynomials [23] that pass through the collo-

cation points pxi, yjq in GNx,Ny
. Taking first and second order partial differentiation to 43 and 44 renders the

values of the d terms which only depend on the values of Nx and Ny and the coordinates of the collocation

points. More details are presented in [20].

Notice that 41 is also adopted when we take the gradient of θn,θn´1 (Ωn,Ωn´1) to formulate the equation

for θn`1 (Ωn`1) or the partial derivative of Ψn and Ψn´1 when we’re computing the velocities Un and Un´1.

In other words, the expansion 41 generally describes the derivatives of a function on discrete collocation

points, where we replace u with the term we’re solving.

Applying the d terms to the expansions 41 and then applying the expansion terms to 40, we eventually

obtain an algebraic system for the unknowns U “ tuNx,Ny
pxi, yjq|i P t1, . . . , Nx ´ 1u, j P t1, . . . , Ny ´ 1uu,

and we can solve these unknowns in a matrix equation.

Theorem 9. We can convert 40 within approximation 41 into the matrix equation:

AxU ` UAT
y ´ σU “ H. (45)

where Ax, Ay, and H are all pieced together by the d,α,β terms as well as boundary condition terms g.

A typical example is H “

ˆ

h1 h2 . . . hNy´1

˙

is a Nx ´ 1 ˆ Ny ´ 1 matrix, where hj “ rhi,js, i P

t1, . . . , Nx ´ 1u, j P t1, . . . , Ny ´ 1u is an pNx ´ 1q-dimensional vector with

hi,j “ fpxi, yjq ´ rpαleft ` βleftd
p1q

x,Nx,Nx
qpαright ` βrightd

p1q

x,0,0q ´ pβrightd
p1q

x,0,Nx
qpβleftd

p1q

x,Nx,0
qs´1˚

trp´βrightd
p1q

x,0,Nx
gleft ` pαleft ` βleftd

p1q

x,Nx,Nx
qgrightqd

p2q

x,i,0s

`rpαright ` βrightd
p1q

x,0,0qgleft ´ βleftd
p1q

x,Nx,0
grightd

p2q

x,i,Nx
su

´rpαup ` βupd
p1q

y,Ny,Ny
qpαdown ` βdownd

p1q

y,0,0q ´ pβdownd
p1q

y,0,Ny
qpβupd

p1q

y,Ny,0
qs´1˚

trp´βdownd
p1q

y,0,Ny
gup ` pαup ` βupd

p1q

y,Ny,Ny
qgdownqd

p2q

y,j,0s

`rpαdown ` βdownd
p1q

y,0,0qgup ´ βupd
p1q

y,Ny,0
gdownd

p2q

y,j,Ny
su.

(46)

With the help of theorem 9, the rest of the steps in solving the Helmholtz equation are direct linear

algebra tricks. By diagonalization, the matrices Ax and Ay are decomposed into Ax “ PDxP´1, Ay “

QDyQ´1 where the columns of P and Q include the eigenvectors for Ax and Ay while the diagonals of Dx
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3.3 Chebyshev-Chebyshev Method 3 METHODS

and Dy consist of the corresponding eigenvalues.

To cancel out the terms Ax and Ay from the equation 45, we introduce Û “ P´1UpQT q´1 and left

multiply 45 with P´1 and right multiply 45 with pQT q
´1

, therefore obtaining

DxÛ ` ÛDy ´ σU “ P´1HpQT q
´1
. (47)

The revised version of the matrix equation 47, with the matrix Û multiplied with either a diagonal matrix

or a scalar constant, indicates a direct solution to every element ˆui,j , i P t1, . . . , Nx ´ 1u, j P t1, . . . , Ny ´ 1u

of Û by division:

ûi,j “
ˆhi,j

λx,i ` λy,j ´ σ
, (48)

where ĥi,j denotes every element of Ĥ “ P´1HpQT q
´1

, while λx,i and λy,j denote the ith/jth eigenvalue

recorded in the diagonal matrices Dx and Dy.

After we derive Û , we can compute U “ PÛ for the inner collocation points. These function values

can be combined with the d, α, β, and g terms mentioned above and applied to the boundary conditions in

40 to finally derive the boundary values uNx,Ny
pxi, yjq, pxi, yjq P BD. This completes our objective, given

the Helmholtz equation 37 and boundary conditions 38, to solve the function values at all collocation points

pxi, yjq P GNx,Ny
which approximate an actual solution.

3.3 Chebyshev-Chebyshev Method

We adopt the general procedure to solve the Helmholtz equations within the AB/BDI2 schemes. How-

ever, an exception arises when we’re solving the Helmholtz equations32 and 33, as there’s no usable boundary

condition for vorticity Ωn`1 but we have both a Dirichlet and a Neumann boundary condition for stream-

function Ψn`1. In this case, we utilize the Chebyshev-Chebyshev method explained in [20] to solve both

Helmholtz equations altogether.
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Simplifying the equations, we obtain a system in the general form

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

∆Ω ´ σΩ “ f in D,

∆Ψ “ ´Ω in D,

Ψ “ g on BD,

Ψn “ h on BD.

(49)

which we’ve secured the compatibility of boundary conditions of Ψ. The system of equations is hard to

approach directly, but we can break down the system into two parts and solve each separately, and finally

add up the solutions from each part of PDEs to obtain the solution we want.

Theorem 10. The system can be decomposed into the P̃ problem:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

∆Ω̃Nx,Ny ´ σΩ̃Nx,Ny “ f,

∆Ψ̃Nx,Ny
“ ´Ω̃Nx,Ny

,

Ω̃Nx,Ny
“ 0 at BD,

Ψ̃Nx,Ny
“ g at BD,

(50)

and the P̄ problem:
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

∆Ω̄Nx,Ny ´ σΩ̄Nx,Ny “ 0,

∆Ψ̄Nx,Ny
“ ´Ω̄Nx,Ny

,

Ψ̄Nx,Ny
“ 0 at BD,

BnΨ̄Nx,Ny
“ h´ BnΨ̃Nx,Ny

at BD.

(51)

Summing up solutions to both problems render the solution to the system:

$

’

’

&

’

’

%

ΩNx,Ny
“ Ω̃Nx,Ny

` Ω̄Nx,Ny
,

ΨNx,Ny
“ Ψ̃Nx,Ny

` Ψ̄Nx,Ny
.

(52)

In theorem 10, the P̃ problem is directly solvable – we only have to solve the Helmholtz equations for

the Ω terms and then apply it to the Helmholtz equations for the Ψ terms. Boundary data for both terms

are sufficiently provided. The main difficulty arises when we’re solving the Ω term in the P̄ problem where
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there’s no given boudary data, and we try to transform the Neumann condition for Ψ̄Nx,Ny
into an equivalent

Dirichlet condition: Ω̄Nx,Ny “ ξ.

Assuming such a condition already holds, then we can adopt the general operations of linear superpo-

sition and expand the function Ω̄Nx,Ny
as a weighted summation of component functions Ω̄l, where each

component function takes value 0 over all but one boundary collocation point, and takes value 1 over the

one designated point.

Writing as mathematical expressions, there’s that Ω̄Nx,Ny
“

řL
l“1 ξlΩ̄l and Ψ̄Nx,Ny

“
řL

l“1 ξlΨ̄l, and

Ω̄l, Ψ̄l satisfy:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

∆Ω̄l ´ σΩ̄l “ 0 in D,

Ω̄l|ηm “ δm,l for collocation point ηm on BD,m P 1, . . . , 2pNx `Ny ´ 2q,

∆Ψ̄l “ ´Ω̄l in D,

Ψ̄l|ηm
“ 0 for ηm P BD,

(53)

which we name as the P̄l-problem.

Notice that L is an arbitrarily taken scale value like Nx and Ny which reflects the fineness of the

numerical solution. Applying the solutions Ψ̄l back to the P̄-problem, we obtain the equation

L
ÿ

l“0

pBnΨ̄l|ηm
qξl “ ph´ BnΨ̃Nx,Ny

q|ηm
,m P t1, . . . , Lu, (54)

which again can be re-written as a matrix equation

MΞ “ H̃. (55)

As l “ 1, 2, . . . , L, there’re in all L P̄l problems to solve. But just like the P̃ problem 50, every P̄l

problem 53 is also directly solvable by methods in 3.2. With the solutions from both problems, we can

finally obtain the influence matrix M:

M “

¨

˚

˚

˚

˚

˚

˚

˚

˝

BnΨ̄0|η1 BnΨ̄1|η1 . . . BnΨ̄L|η1

BnΨ̄0|η2 BnΨ̄1|η2 . . . BnΨ̄L|η2

. . . . . . . . . . . .

BnΨ̄0|ηL BnΨ̄1|ηL . . . BnΨ̄L|ηL

˛

‹

‹

‹

‹

‹

‹

‹

‚

, (56)
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and the H̃ term:

H̃ “

ˆ

ph´ BnΨ̃Nx,Ny q|η1 ph´ BnΨ̃Nx,Ny q|η2 . . . ph´ BnΨ̃Nx,Ny q|ηL

˙T

, (57)

and solve Ξ “

ˆ

ξ1 ξ2 . . . ξL

˙T

“ M´1H̃. Note that to compute the partial derivative terms BnΨ̄a|ηb,

we only need to apply the expressions in theorem 8 to approximate BnΨ̄a over the collocation point ηb.

With the ξ values at hand, we can solve the Helmholtz equation 50 where the boundary condition related

with the Ψ term is now replaced by Ω̄Nx,Ny pηmq “ ξm at BD (1 ď m ď L). Eventually, the solutions for vor-

ticity and streamfunction at all collocation points are obtained by the summation ΩNx,Ny
“ Ω̃Nx,Ny

`Ω̄Nx,Ny
.

This completes our solving of the equation form 49.

Remark 3. Notice that to make the bar problem 51 solvable with sufficient boundary data ξmp1 ď m ď Lq

for Ω, we initially set L “ 2pNx ` Ny ´ 2q the number of inner boundary collocation points. However, the

matrix M obtained in this way is not invertible, and [20] provides the resolution of further removing four

designated collocation points from our computation to make all eigenvalues in the influence matrix non-zero,

therefore making L “ 2pNx `Ny ´ 4q.

4 Results

We implement the entire procedure from section 2 to section 3 in Matlab. In the experiment, we set

the Rayleigh number Ra “ 108 and Prandtl number Pr “ 4.4, and we model the convection cell under

counterclockwise rotation ranging from 00 to 1800 with 50 as the step size (α P t5k|k P N, 0 ď k ď 36u).

Within discretization, we set Nx “ Ny “ 256 which indicates 2562 collocation points over the convection

cell, and we set maximum timestep tmax “ 106 ´ 1. This implies that for each tilt angle α, we model the

flowing of fluids, starting from its initial condition t “ 0, up to t “ 106 ´ 1 discrete units of time. In

accordance with the time size, the Matlab program iteratively solves 106 ´ 1 sets of discretized equations 30

- 36, and always plug the former recorded solution/initial values for temperatures θn´1,θn, velocities Un´1,

Un, and vorticity values Ωn´1, Ωn into the current equations at the pn` 1qth timestep.

We directly adopt the method in section 3.2 to solve the equation for temperature θ, setting f in

equation 37 to be the right-hand-side term in equation 31 and α “ 0, β “ 1, g “ 0 for the left and right
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side boundaries and α “ 1, β “ 0, g “ 0 for the top and bottom boundaries in equation 38, as a reference

to 36. Similarly, as we solve the Helmholtz equations for vorticity and streamfunction 49 with the help of

the Chebyshev-Chebyshev method, we set the f term according to equation 32 and boundary conditions

g “ h “ 0 referring to 34.

Apart from the recorded values for the temperature, velocity, vorticity, and streamfunction unknowns,

we also record the Reynolds number Re, Nusselt number Nu, and system net angular momentum L at the

end of every iteration.

Definition 3 (Reynolds Number).

Ren`1
“

maxptpUn`1pxi, yjq2 ` V n`1pxi, yjq2q|pxi, yjq P GNx,Ny
uq

Pr
. (58)

The Reynolds number Re measures the maximum possible amplitude of fluid flow speed inside the cell

at timestep t “ n ` 1, as a reflection of how turbulent the viscous fluids can potentially become through

time after being heated and tilted.

Definition 4 (Nusselt Number).

Nu “

ˆ 1

0

θnpx, 1, tqdx. (59)

The Nusselt number describes the total heat flux passing across the cell on the y-axis at y “ 1 and

reflects how heat originating from the bottom heat source propagates and maintains its influence to flowing

fluids at the coldest top.

In the discrete sense, we compute integration also with the help of d terms in section 3.2. As Ax is an

Nx ´ 1 ˆ Nx ´ 1 matrix where rAxsi,j “ dx,i,jp1 ď i, j ď Nx ´ 1q, we take the inverse of Ax and denote

d´1
x,i,j “ rA´1

x si,j , so that

Nun`1
“

Nx´1
ÿ

j“1

d´1
x,1,jθ

n`1
y pxj , y0q “

Nx´1
ÿ

j“1

d´1
x,1,j

Ny
ÿ

r“0

d
p1q

y,0,rθ
n`1pxj , yrq, (60)

takes the value from θn`1 and the d terms.

Definition 5 (System Total Angular Momentum).

Lptq “

ˆ 1

0

ˆ 1

0

ppx´ 0.5qV px, y, tq ´ py ´ 0.5qUpx, y, tqqdxdy. (61)
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Figure 2: GIF animation of Tilted Convection Cell

Finally, we calculate total angular momentum in the system which, in the discrete version, is written as

Ln`1 “

Nx´1
ÿ

i“1

Ny´1
ÿ

j“1

ppxi ´ 0.5qV n`1pxi, yjq ´ puj ´ 0.5qUn`1pxi, yjqq. (62)

We’ve chosen p0.5, 0.5q as the ”origin” point where the fluid particle with unit mass flows around and

holds a dimensionless angular momentum. The value of the angular momentum is therefore exactly the cross

product of position relative to the origin and the 2-dimensional velocity U. Overall, the three output values

Re, Nu, and L represent the features of fluid flows inside the convection cell which change along with the

tilting angle from 00 to 1800. For each of the 106 timesteps, one output value is recorded so we eventually

obtain the outputs in the form of 106-dimensional vectors.

We use Python codes to extract and process the recorded outputs, in which we take the average of

values after the 106{2th timestep. The average is taken because we assume the system with a perturbed

initial temperature field has gradually stabilized throughout the former half of the entire convection process

and converged to a state in the latter half where the turbulent flows are either becoming static or circulating

around the cell in cycles. Specifically for total angular momentum, we take the root mean square average

because the L values oscillate around zero and take positive and negative values which cancel out each other

in the computation of the arithmetic mean. It should also be notified that we don’t need to have similar

concerns with the Re or Nu values because they’re defined to be always positive. If we alternatively define

L as the absolute value of the integral, we can also directly apply the arithmetic mean. In all, there’s a high

level of freedom in dealing with the statistics.

Apart from output values, we also use Matlab to output GIF animations 2 which present the dynamic

variation of the temperature field of the square convection cell, given every possible tilting angle. The bottom
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Figure 3: Tilted 450 Counter-Clockwise

of the cell influenced by the heat source is dyed dark red and the cooling part at the top is dyed blue. As

time passes, it’s viewable from the animations that red parts of the fluid advance upwards into the bluish

area because of lower densities (and buoyant impacts) compared with blue parts, and the fluids with high

and low temperatures intermix together and create white regions inferring a moderate temperature θ “ 0.5.

As will be discussed in the following parts, for a certain range of tilting angles, the active joining and

rotating of red and blue areas will gradually come to a rest as the entire temperature field stabilize. This

implies the temperature function θ is reaching a steady state where the heat entering a region carried by

blobs is balanced with heat diffusion from the region to neighboring regions. As the heating/cooling sources

are fixed to the bottom/top of the cell, they’re always dyed dark red and dark blue however the entire cell

is tilted, as are presented as thin dark red/blue stripes statically clinging to the bottom/top of the cell.

Nevertheless, different tilting angles decide different patterns of flows and heat propagation in the cell which

we’ll observe in the following visualization section 4.1, combined with plotted results of the Re, Nu, and L

outputs.

4.1 Visualized Results

Notably, as α “ 450, the system converges into a state in figure 3 where the red and blue stripes

constantly circulate along the sides of the cell, while the regions away from the margins present light red/blue

colors indicating more moderate temperatures. This circulation is replaced by oscillation as exemplified in

figure 4, where red parts are continuously pushed down and elevating again while the blue parts display the

opposite motions. The amplitude of oscillation gradually diminishes as time passes and the system finally

converges into the state where the red parts remain still at the upper half of the cell (but not the ”top” of
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Figure 4: Tilted 900 Counter-Clockwise (Heating/Cooling Sources on Sidewalls)

Figure 5: Tilted 1350 Counter-Clockwise

the cell, which is now rotated 900 counter-clockwise) and blue parts take the rest lower half.

Similar states of convergence are also observed in figure 5 and figure 6 where the fluids turn more

laminar and that it takes less and less time for the bold red and blue parts of the cell to turn steady and

stay after cyclic or oscillatory activities, despite the constant influence of heating/cooling sources at the

”bottom”/”top” of the cell. Specifically in figure 6, when the cell is totally upside-down, there’s no moving

of red or blue parts observed, and they stay at their initial locations throughout the entire time span.

For each tilt angle α, we also extract the average value of the Re, Nu, and L numbers of the stabilizing

convection system and we fit the results to a plot for each number. The variation pattern of each plot as α

rises from 00 to 1800 provides supplementary information about fluid velocities. It’s important to notice that

the motion of ”red/blue parts” in the previous GIF animations don’t directly indicate the motion of blobs

inside the cell because the blobs themselves continuously change in temperature, and we’ll immediately

see that there’re constantly dynamic fluid activities even in steady temperature fields. In fact, the plots
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Figure 6: Tilted 1800 Counter-Clockwise (Upside-Down)

Figure 7: Reynolds - Angle Plot

reveal fluid activities unobservable from the GIF animations which provide information about the changing

temperature fields, and the information combined disclose physical facts of the convection system that we

can analyze and even exploit in detail in the future work.

As is displayed in figure 7 – the Re-α plot – the dimensionless Reynolds number continuously decreases

from nearly 1600 to 0 while the tilt angle grows from 00 to 1800. This reveals that turbulent flows are

gradually replaced by laminar ones as the cell is tilted. As we look at the corresponding GIF animation 3

when the cell is moderately tilted with α “ 450, we can indeed find heat being carried by the speedy fluids

circularly around the margins of the cell. The heated fluids accelerate and flow upward as they have thinner

densities, while the cooled fluids with higher densities sediment. Both incompressible fluids hit the up and

bottom of the cell and start to move in directions parallel to the left and right sides, eventually creating

circulation that press close to the margins. In the case α “ 450, this fluid activity takes a sufficiently high

speed so that heat is carried along the trajectories of the moving fluids quicker than they diffuse. As a result,

the temperature field in red and blue is also driven to circulate in the similar way.

The observable motion of red and blue stripes in the temperature field quickly diminishes as α grows
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Figure 8: Net Angular Momentum - Tilt Angle Plot

to 90 degrees and higher. As observed in 4 and 5, the temperature field grows steady after momentary

up-and-down oscillations of the red and blue parts. However, the Re plot 7 reveals that the fluids are still

circularly rotating around the p0.5, 0.5q center of the cell, implying that the delivery of heat in blobs moving

around the cell is gradually balanced with the diffusion of the heat being carried. Therefore, even though

the GIF animation seems static, we know from the Re plot about the dynamic fluid motions that continue

within the cell.

Nonetheless, it’s also observable from the plot that when α grows too high, the moving fluids also

stabilize along with the dropping of the maximum possible velocity. In the extreme case when α turns 1800,

there’s neither fluid motion nor change of temperature field in the first place, and the whole system remains

the way it’s initialized.

The changing of fluid activities along the growing of α is also manifest in the figure 8 of the L plot. We

can see the total angular momentum of the system which quickly plunges as the angle passes around 25´ 30

degrees and then slowly decreasing after 45 degrees until eventually reaching 0. This directly indicates there

are active circular fluid activities across the entire convection cell at low tilting angles (α ă 450), which

immediately weaken but still remain moderate at degrees ranging from 45 to 135 degrees, and finally ceasing

to exist at large angles (α ą 1350). The statistical results of the L plot highly coincide with our observations

in the Re plot and supports our narrative of the variational fluid motions aside of the changing temperature

field.

Finally, another interesting observation is revealed in the Nusselt number plot in figure 9 which models

how much heat is passing through the top of the cell on the y-direction (parallel to the left and right sides of

the cell). It’s shown that the Nusselt number continuously increases until reaching the maximum at α “ 900

(precisely when the heating and cooling sources are placed at the sidewalls instead of the top/bottom), and

then swiftly drops as the angle continues to increase to 1800. It’s clear that at high tilting angles, the heated

fluids already at the upper part of the cell tend to remain static, so there’s little heat transfer on the y
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Figure 9: Nusselt Number - Tilt Angle Plot

direction.

But still, it remains a question why the largest heat flux is observed at α “ 900 where the total angular

momentum L already slumps and the fluids already become laminar with a falling Reynolds number Re and

rotate moderately. In fact, our finding aligns with real life applications like the radiators for computers which

are always placed vertically so that heat will be most efficiently diffused from the computer equipment. To

approach this finding in a scientific way, there are a series of prospective hypotheses that may explain the

optimum of heat flux as we further our studies of the Rayleigh-Bénard convection model in our future work.

5 Conclusion and Overlook

In this paper, we model the dynamics of the Rayleigh-Bénard convection model – incompressible fluids in

a two-dimensional tilted convection cell with fixed heating and cooling sources. We adopt the Navier-Stokes

equations within Boussinesq approximation and a heat equation to model fluid turbulence and the according

changes of the temperature field. We introduce the concepts of vorticity and streamfunction which provide

sufficient initial and boundary data to solve the equations. The equations are mathematically discretized

within the AB/BDI2 scheme and transformed into Helmholtz equations, and we introduce the Chebyshev-

Chebyshev method to assist our solving of the Helmholtz equations in the discrete sense – acquiring function

values at designated discrete space and time coordinates. Finally, in accordance with every tilting angle of

the convection cell, we record the variation of fluid temperatures and velocities over time and present it as

animations as well as plots of the Reynolds number, the Nusselt number, and the total angular momentum.

It’s discovered that heat flux continuously grows as the tilting angle increases, and then descends after the

tilting angle reaches 900; and circular fluid activities constantly weaken as the tilting angle constantly grows

from 00 to 1800.
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In the future research, we’re planning to apply more Rayleigh numbers Ra and Prandtl numbers Pr and

different cell sizes (so the square cell turns rectangular) to our Navier-Stokes-Boussinesq equations. In this

way we can validate whether the changing patterns of Re, Nu, and L numbers of the system along different

tilting angles – as we’ve described in last section – are maintained on distinct physical conditions of the cell.

On top of these observations, we’re aimed to disclose physical hypotheses that provide an explanation for

questions like why an optimal amount of the Nusselt number is achieved at a tilting angle of 90 degrees and

why the derivatives of the Nu, Re and L numbers (as functions of α) switches sharply around values of tilting

angles like 450, 900, and 1350. In the end, we can prospectively extend our study of the system under a fixed

tilting angle to a dynamically rotating system and study questions like maintaining a circular rotation state

of the fluids or optimizing net heat flux on the y direction, as the convection cell goes on to rotate back and

forth. These questions are bound to provide an insight into studies of natural processes and applications to

industrial and engineering fields where thermal convection systems are intensively dealt with.
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